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Abstract—This tutorial-survey paper introduces the problems of
decentralized statistical decision making (team theory) where the de-
cision makers have access to different information concerning the un-
derlying uncertainties. Using a simple thematic example with variations,
the paper introduces and explains various concepts and results of team
theory as applied to economics, information theory, and decentralized
control.

I. INTRODUCTION

ONSIDER the following simple everyday example of co-
Coperaﬁve decision making. The example is somewhat

contrived but is designed to emphasize the essentials of
team theory by stripping away all unimportant details." Mr. B
who lives in Boston wishes to meet his partner Mr. H who lives
in Hartford (about 100 miles away) in order to conduct some
business in Worcester which happens to be located midway be-
tween Boston and Hartford. Their arrangement is that they
will meet in Worcester the next day at noon if it doesn’t rain.
Because of various reasons, it became impossible for B and H
to communicate further with each other after they have con-
cluded their arrangement until their meeting. New England
weather being what it is, an uncertainty has developed as to
whether or not it is raining in Worcester when H and B are
about to depart for their meeting. Of course each of them
has access to his own local weather information in his city.
This information is in turn correlated with the state of weather
in Worcester as well as with the information received by the
other person. Let us also assume that the nature of the busi-
ness meeting is such that the presence of both partners is re-
quired. Thus a simple payoff matrix as illustrated in Fig. 1
may be postulated. .

The question facing B and H is whether or not each should
embark on the journey to Worcester. The problem is differ-
ent from simple decision theory since each person must take
into account in his decision what the other person may de-
cide based on his own information. More specially, we assert
that the main ingredients of a theory of team decisions are:

1) the presence of different but correlated information for
each decision maker about some underlying uncertainty ;

2) the need for coordinated actions on the part of all de-
cision makers in order to realize the payoff.
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'Reader can easily translate this example to a more meaningful mili-
tary context.

Rain in Worcester Shine in Worcester

Mr. H Mr. H
go |don’t go go |don't go
Mr. B gO —-4 -2 Mr.B go 10 |-3

don'tgo| -2 | 5§ don'tgo|-3| O

Fig. 1.

If one or more of these ingredients are missing, then the prob-
lem simplifies, decouples, or trivializes. For example, if the
cities involved were Boston, Tokyo, and London, then we do
not expect that the local weather conditions will be cor-
related. In this case, it is intuitively clear that decision making
will only depend on the prior expected weather conditions
in London which we assume is known. The problem simplifies.
It is also obvious that if the tasks to be performed by B and
H do not require coordination and can be performed sep-
arately, then each person can make decisions independent of
the other. ;

It should also be emphasized that we permit any kind of
communication and agreement among the decision makers
beforehand. Thus they can agree on taking any coordinated
actions as a function of the information they separately have.
For example, B can agree with A that he will go to Worcester
only if it shines in Boston. However, H cannot be sure about
the state of weather in Boston based on that of Hartford. This
is to be contrasted with a two person optimization problem
under conflict or noncooperative behavior where no pregame
agreement can be enforced.

To proceed further with the solution of this example prob-
lem we need to specify some additional data, namely the cor-
relations among weather conditions in the three cities. This
we express as a joint probability distribution of three random
variables £p, £y, £y each can take on two values (rain or
shine) as shown in Fig. 2.

Given the data in Figs. 1 and 2, we are then in a position to
evaluate the expected payoff for any decision rule that may be
adopted by B and H. Since the information state of each per-
son is binary (rain or shine in his own city) and so are his
choices, there are a total of four possible decision rules per
person or sixteen decision rule pairs which we express as
ug =vg{kg), ug =vy((y). Note that the decision ug can
only depend on the information g and uy on §y. The pay-
off is a function L of upg, uy, and Ey. Thus the expected
payoff for any yg and 7y is

T =3 L(up,uy, £w) Pr (kg, &xr, Ew) (I-1)
13
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Prob. 0.25 0.05 0.1 0.1 0.1 0.1 0.05 0.25
Fig. 2
where Note that for a given set of strategies tuples 7;,i=1,--,n,
" L is a well-defined function of the £, i.e.,
ug =7p(kp)  um =Tu(EH).

Note that the summation or expectation is meaningful only
when the decision rules yg and 7y are specified. The readers
are invited to guess what the optimal decision rules for B and
H should be (the answer with the optimal payoff is given at
the end of the paper) and to go through the calculation in
(I-1) for at least one decision rule pair.

II. A ForMAL MODEL AND A CANONICAL EXAMPLE
FOR TEAM DECISIONS

We can formalize the example discussed in the previous sec-
tion to develop a general model for team-theoretic decision
problems. There are five principal ingredients:?

1) A vector of random variables &= [§;," " ,£,] with
given distribution p(£). The random vector represents all the
uncertainties that have bearing on the problem. They may be
measurement noise, random disturbance, uncertain initial con-
ditions, etc. ¥ is often denoted as the ‘“‘states of nature” or
“nature’s decision.” :

2) A set of observations z = [z, "
functions of £, i.e.,

*,2,] which are given

zi=ﬂi(El,"';Em), i=ll...’n (II”I)
In general z; is a vector, and is known as the information or
observation: available to the ith decision maker (DM); The set
{mili=1,---,n} is denoted as the information structure of
the problem. ,

3) A set of decision variables [u;, """, u,] =u, one per
DM. There is no loss of generality to assume u; is scalar; vec-
tor u; can always be decomposed into more DM’s who happen
to have access to the same observation z;. The variables £, z,
u are all assumed to take values in appropriate spaces =, Z, U.

4) The strategy (decision rule, control law) of the ith deci-
sion maker is a map 7;: Z; = U; which is simply a contingency
plan of which decision to take under what circumstances (ob-
servations). We write

u; = v;(z;). (I1-2)

Y \31:' is to be chosen from some admissible class of functions
Iy

5) The loss (payoff) criterion of the problem is a map L:
EXU—R,ie,

LDSS:L(ME,' Tty Uy, El!”‘ !Em)- (II'S)

?Readers are urged to use the example in Section I to help fix ideas
in the general specification below.

We do not consider mixed strategy since nothing is lost in the team
case unless other constraints are present on I" [27].

L, ) =LC -, yy=nm ), . 5, )

Thus the expection of L with respect to p(§) is well defined.
We are now in a position to state the team decision problem
45 §

Find v; €T}, Viin order to.
minimize J = E¢[L(u = y(n(%)), )]

ot (II-4)

Min J(7)
YET

Equation (II-4) is known as the strategic form of the team
problem. Note that conceptually (II-4) is a deferministic
optimization problem albeit a very difficult one in general.’
It is a function (versus parameter) optimization problem and
J is a functional. Even assuming all kinds of differentiability
on the functions involved, we still face a calculus of variation
problem in multiple independent variables (the £'s). Further-
more, usually the space I" has very little structure. Any reader
who has attempted to solve the example problem in the pre-
vious section has experienced a taste of computational labor
involved. Thus to go beyond brute force solution of (II-4)
we need to either relax our optimization requirement or to
impose more structure; both approaches will be pursued
below.

Let us look at the team problem from the ith DM’s view-
point. Let 7; denote the strategy of all other DM’s. Assume
7, is fixed and DM; knows this.*

Then the problem facing DM, is

i ;)= in E s =1 v¥: 4
"H c ri J(Tl, 7|) '"bien}“ EEL(HI T: (ﬂl (E))! 7]: 2)]

(II-5)

Since n;’s are fixed, z; is a well-defined random variable, we
can replace E; by EZ‘EH,'. where EH,,'. stands for the ex-
pectation conditional on z;. Thus

i )= Mi i -~
g SO M) = Min Ep Bz, U0 %, £)
=Eq Min Eyjr,(L0n, % B)

where the second equality comes from the fact that determin-
ing the optimal u; for each z; is the same as choosing ;. Con-
sequently, we have the equivalent so-called extensive form of

‘Since this is a fully cooperative problem we can expect all DM to
communicate with and inform each other during the design or solution
phase of the problem.
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@«15
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Fig. 3.

equation (II-5)

Min E¢p, [L(u;, 7, £)] E.Ui}g?fiji(ub zi; M), Vi

u €U;
(11-5")

Note (II-5') is a parameter optimization problem for each z;
and fixed 7;, and is known as the person-by-person optimality
requirement of the problem. Equation (II-5) is necessary for
(II-4) but not vice versa. Only with additional assumption on
L and/or other ingredients of the problem before (I1-5") can
guarantee (II-4). Note also, we have not completely elimi-
nated the difficulties of the strategic form since (II-5') is still
parametrized by 7;. Thus, to solve (II-5") requires in princi-
ple an iterative loop as shown in Fig. 3. This is in contrast
with a one-person decision problem in the extensive form
where no dependence on any part of 7 is present in (II-5').
For this reason, equation ([I—S') is often referred to as the
semistrategic form of the problem.

Having developed the above general model, one might ask
what type of issues should the model address. Two major
questions and their derivatives have received most of the atten-
tion of the research effort in this area. Firstly, of course is
the question *‘what should one do?” or “‘what is the optimal
decision?” This requires the development of solution method-
ology associated with (II-4) or (II-5 "). Secondly, we can raise
the question “who should know what?” i.e., the design of the
information structure 1. In some sense, this is a more impor-
tant and more difficult question since it presupposes the
ability to answer the first question in some fashion and then
follow it with a second stage optimization on 1. However,
the resolution of this second question will shed light on the
problems of the value of information and the organizational
form as informational efficient mechanisms of decentralized
decision making.

To illustrate the solution ideas and issues discussed above
and to develop further more specific results we shall restrict
our attention to a particular class of problems. In fact, we
shall discuss this class of problems in terms of a particular
thematic example which with minor but interesting variations
we shall employ for the rest of this paper. The understanding
is that while results are obtained for this particular example,
they are true for the entire class of problems; and the concepts
developed have even more general validity. This claim will be
made obvious as the paper develops.
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Consider the following two person team problem. The deci-
sion variables are u; and u, which must be chosen to minimize
the loss function;

h>0.
(11-6)

L=LY(x+au, +u;) +hul +gui, 4,220,

There are three random variables x, vy, and v, defined for the
problem with independent Gaussian distribution x ~ N(0, 0?),
vy ~N(0, 1),and v; ~N(0, 1), respectively. Two observations

{y;=x+bv;, 5>0

ya =x+cuy +dvg, ¢>0, d>0 (11-7)

are possible on the system. The alert reader may have already
noticed that y, is not in the form we had specified for a gen-
eral team problem in Section I unless ¢ =0. We have intro-
duced it in anticipation of further development with the ex-
ample in the next two sections. The purpose is to illustrate
further and different aspects of team problems by appropriate
choice of these unspecified constants a, b, ¢, d, k, and g. In
particular, nonzero value of ¢ will introduce an entirely new
dimension to the team problems discussed so far. In any case,
to complete the specification for the first problem we stipulate

a=b=d=1, c=0
(P1){ h=g=}%
Zy =%1, Z2 =¥2.

One interpretation of the problem is that there is a random
initial state x; u; acts based on noisy observation z; =x + v,
to bring the state to x + uy; 4y now acts based onzy; =x + v,
resulting in the final state (x +u; + u;); the object is to mini-
mize the final state and the energy required to achieve it.
Following Fig. 3, we guess

uy =k1zy Uz =kzzy (II-8)
Specializing (1I-5") for (II-8) yields fori = 1, 2
uy =-%Eg; (ka2 +x)
{ Uz == 5 Eg;z, (ky2y +). (11-9)

Using the standard formula for conditional expectation of
Gaussian random variables and requiring (II-8) and (II-9) to
hold for all z; and z, yields the consistency condition

[1 a’,fz(a=+1)] k1] _[1] o?
/26 +1) 1 k) L) 2@+ (-10)

which is a set of linear equations with the intuitively reason-
able solution k¥ = k¥ =-0%/(30% +2). Is this solution opti-
mal? (i.e., does it satisfy (II-4) in addition to (II-5")).

To resolve this let us denote the person-by-person optimal
solution we just obtained as uf =yf(z;) = k{fz;, i =1, 2; and
any other strategy u; =7;(z;). Then by strict convexity of L
in u; and u; we have

oL
L(uy, ug, £) > L(ut, u3, £) +_—B (uy —uf)
B e, ul

oL
+ —

(ug ~ uf). (I-11
auz (u.l‘u;) 2 2) ( )
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Now taking expectation on both sides and substituting for u;,
uf by v; and ¥, respectively,’ equation (II-11) becomes

J(11, 72) SEIL(uy =71(z1), uz = 72(22), §)]

: }
ul,uy

b
il
71)3

1
ufua‘}
oL

=IO+ [Ez,('h -1 Bz, {a'- H

>J(ri, 7§)+E{(7:

aL
BU2

#* E {(Tz -73)

!lu,ud

uy u;}
=J(rf, 1)

where the last equality is justified by (II-5') which says that

2 e, O
du; Sl €171 3y,

» aL |
+E;, |(v2-72) Egyz, {7

auz

=0.

*
Uy, U,

The interchanging of expectation and partial differentiation
is permitted since u; is z;-measurable. We have thus illustrated
the first géneral result in linear-quadratic Gaussian (LQG) team
theory [1]. )

Proposition 1: In LQG teams with @ >0,

L:%.uTQu}uTSE, >0, £E~N(,Z2)
and :
y = HE.

The unique optimal solution is linear in the information and
is obtained by solving the person-by-person optimality con-
ditions (II-5").

III. VARIATIONS ON A THEME

For the first variation on the thematic example discussed in
the last section, let us consider the following information
structure for u; and u, and specification of the parameters
namely

z; =y =xtu
x+v
Y2 x+tu tug
a=b=d=1l,c=1,h=g=}%

The only difference of (P2) with (P1) lies in what u; knows,
i.e., u; knows what u; knows and c=1. As we mentioned
earlier z, is not in the form of the general information struc-
ture we specified in Section II. However, consider

[}’1] =[J’l ]_.[J"l ]
»2 ¥2 - 11(z1) x+uv,]|

Knowing z, and 7; (re: footnote 4), we can generate z5 and

i

z (k1)

*Recall again that u, and u, are well-defined random variables only
when the strategies v, and v, are specified.
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similarly for z; from z;’, and ;. Consequently any u; =
v2(z2) can be realized by u; =7;(z3) and vice versa. In
other words, the information structure z; is equivalent to
Z;. Thus (P2) with the equivalent 22 comes under the class
of LQG problems covered in Proposition 1, and (P2) can be
solved by exactly the same method with the optimal strat-
egies linear in the information

uy =kyzy up = kg'zz (I11-2)
where
L it _[-#*1a +2o’-)] o
Y3+ 7 -2+ 200) )

The interpretation of (P2) is the same as (P1) except that
¥2 (with ¢ =1) is to be considered as a noisy observation on
the state of the system after u; has acted. In other words,
we consider a dynamic system governed by x;., =x;+u,
evolving in time with initial state x. In this sense, the informa-
tion structure z, has perfect recall since later DM always know
what earlier DM knows. Thus if we regard u; and u, as de-
cisions made by the same person at different times, we have
just illustrated the well-known result.

Proposition 2: In one person LQG stochastic control prob-
lems with perfect recall, the optimal control law is linear.

It should be remarked that the linearity of the optimal con-
trol under this setup is independent of any assumption on
p(§) except Gaussianness. Since £ represents all the random-
ness in the problem we can have any correlation among initial
condition, measurement noise, and disturbances. Only when
we wish to further express the solution in terms of Kalman
filter plus deterministic controller (i.e., separation results) do
we have to make additional assumptions on the form of p(),
e.g., independence among the components of £.

More generally, let us consider

yi = Hit + Dyu (I111-4)
where D; must satisfy the causality conditions
If u; acts before u; then [Dy] jh comp =0 (III-5)

and the information structure

Zy k EE[
;=
Yi

where
E;={k|Dy #0}.

The information structure (III-5) says that if uy affects the
observation y; (i.e., Dy #0) then u; knows what ug knows.
This structure is a generalization of perfect recall and defines
a partial order of inclusion on what various DM know. We
denote this as a partial-nested (PN) information structure.

It should be clear from the development of (P2) that partial-
nesting is sufficient to enable us to generate an equivalent in-
formation structure z; of the form specified in (III-1). Conse-
quently we have Proposition 3.

Proposition 3: In a LQG team problem with PN information
structure, the optimal strategies are linear and can be solved by
solving a system af linear equations (generalization of (II-10)).

This is about as far as one can push the basic team results in
Proposition 1 [11]. In fact if the information structure is lin-
ear then partial-nesting is necessary as well [29].
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For the second variation on our example, let us remove the
assumption of perfect recall (or partial nestedness), ie., we

let
G=C=d=h=1,
(P3)

Zg =Yy =X tu; tu;.

b=g=0

The crucial difference is the fact that z, does not include y,
in (P3). On the other hand “b =g =0" is added only to aid
our intuition. The interpretation of (P3) is that DM, knows
x perfectly (b=0) but it cost him energy (h#0) to act.
DM, has no cost (g =0) on u, but his information about x
is corrupted by noise and dependent on u;. Since we do not
have perfect recall, it is not possible to reduce this problem
to that of (P2) or (P1). The “dynamics” or “order of action”
definitely plays a part here. The type of information struc-
ture in (P3) is a special case of the more general form

zp=n;(§,u) (11-1")

subject to obvious causality requirements. Equation (I-1") is
referred to as dynamic information structure and team prob-
lems with (II-1") are dynamic'team problems as contrasted
with (II-1) which are static. Note that this terminology does
not depend on whether or not there is a dynamic system in-
volved. Problem (P1) can certainly be interpreted from a dy-
namic system viewpoint as we have done. But it is still a static
team problem. What makes the problem dynamic is the fact
that the information of latter DM depend on the decisions of
earlier DM’s. In fact unless we specify the decision rule or
strategy of the earlier DM, e.g., 7; in (P3), the information
variable z, is not even a well-defined random variable. This
difficulty is bypassed in (P2) when we derived an equivalent
static information structure from the PN structure. This is not
possible in (P3). More explicitly, note that z; =x + 7;(x) + vy
need not be a Gaussian random variable even though x and v,
are unless v, is linear in x. Thus computation of E(x/z;) may
be a very difficult task since no easy formulas exist when z;
has non-Gaussian distributions. Furthermore, looking at the
payoff, we have J=E¢[(x +7,(x) +72(x +7:(x) +v; N+
hy}(x)] =J(yy,72(71)). The thing to note here is that 7;
enter J not only directly (from ku} term) but also indirectly
through 7, (via z;). Consequently, unless 7, is linear or some
appropriate function J need not be convex in y; even though
L is convex (quadratic) in u;. The point, which is not often
appreciated even in open literature, is that we are dealing with
an optimization problem in the 7,7, space. For the purpose
of solution sometimes it is convenient to take the extensive
form solution viewpoint, i.e., instead searching in 7y space we
try to determine the optimal u as function of z which is equiv-
alent to constructing an optimal 7y. But in order to ensure we
have a nice optimization problem it is convexity and compact-
ness in the 7y space that is needed.

The computational as well as theoretical difficulties sketched
above makes (P3) a most difficult problem. It is still unsolved
today, some 12 years after Witsenhausen first analyzed it
[2]. In fact, it may be surprising to the reader that despite all
the work on optimization in the past, we do not even have a
sufficient condition for optimality for (P3) similar to the
usual second variation condition in function optimization.
Optimization problem of the type J(yi,72(71)) involving
composition of the optimizing functions simply have not been
studied with any kind of systematic effort.
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Although we have not been able to solve (P3) completely,
we are not helpless. First of all, the conceptual solution by
iterated guessing of vy in Fig. 3 can still be used. Following
(P1) we guess u; =kyz; up =kyz,, we find that consistency
and (II-5') requires that k; and k, satisfy a set of NONLIN-
EAR (cf. (II-10)) algebraic equations.

(1 +E)
2h+(1+ky)?

(1+k;)0?
(1+k)0*+1°

ki =

Tt (1I1-6)
Appropriate roots of (III-1) still constitute a person-by-person
optimal solution for (P3). But unlike in (P1), they are NOT
team optimal. Proof of this assertion was first pointed out in
[2]. Consider the strategy u; =0 sgnx - x. This has the
effect of converting x; =x +u; to a random variable with a
two point distribution at *¢. Since z; =x; + v,, for large o,
z, is still essentially two point distributed. Then z, is a very
good estimate of x; for large 0. Hence u; = -0 sgnz, will al-
most surely cancel x; which implies x5 =x; +u; = 0. Since
there is no cost on i it can be argued that for large ¢ the cost
J=kE(y}(x)) can be made less than the person-by-person
optimal cost realized by using y; and 7, specified in (III-6).
This is because u; =0 sgnx - x is on the average not neces-
sarily a large number when o is large.

On the other hand, a lower bound to the optimal cost can
always be obtained for non-PN LQG dynamic team problem
by “nestification” of the information structure, e.g., let z; =
[z1,72] in (P3). Since adding information to any DM never
hurts the optimal payoff,® Proposition 3 applied to the
nestified version of (P3) will yield a lower bound to (P3).
Thus if we denote J} as the linear person-by-person optimal
solution of (P3) in (6) and Jpy as the solution of the nestified
version of (P3), we have the general.

Proposition 4: In non-PN dynamic LQG team problem the
optimal J* is bounded above and below by

JEnSI*<JL. (111-7)

The discussion about (P3) also illustrates another important
conceptual point. The ability of u; to modify the information
z, received by u, was used to advantage in deducing a superior
nonlinear solution for (P3). We shall refer to this characteristic
of dynamic information structure as “‘signaling” in the sense
that DM; can control what DM, knows about the states of
nature. ) )

This signaling effect can be made more transparent if we
consider

®3') {(P3)withd=0 and z; =y, =u,}.

In this case we can take u; = ex and u; =-(1 +€) u; /e and J*
can be made arbitrarily close to zero by taking € small enough.
Here the role of u, is purely to inform u,. Because d =0 and
y2 =uy are equivalent to infinite precision in the transmission
of information, we can visualize u; as a double precision num-
ber. The most significant half of the digit positions of the
number is used to optimize J directly (x; optimal is zero in
this particular case); the least significant half can be used to

S Any strategy that can be realized before can still be realized with
the enlarged information structure.
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carry signal information (the value of x) without affecting the
payoff substantially. This phenomencn of hiding information
in control action has been referenced to as “transparency” of
information [3].

In traditional control problems, we introduced the concept
of “dual control” to summarize the idea that the purposes of
control are two fold. One is to reduce error; the other to im-
prove our own knowledge about any uncertainty. We can ex-
tend this concept to decentralized control problem and intro-
duce the idea of “triple control.”” That is, a third purpose of
control is to reduce other DM ’s uncertainties via *‘signaling.”

In general, these three purposes of control are all present in
a given optimal strategy for a general team problem with the
information structure of (II-1'). If all stochastic effects are
absent, e.g., in deterministic problems, only the first purpose
remains. In (P3) since each person only acts once, the second
purpose is absent. But DM; does more than just signaling
since u; also modifies the payoff function u; sees (u; ob-
serves a noisy x; and attempts to cancel x; not x). In order
to isolate the phenomenon of signaling, we shall infroduce a
third variation of our thematic example.

IV. SIGNALING AND INFORMATION THEORY
Consider the problem

Mm E{[x - 72(x +71(x) + v3)]* +hyi(x)}

Y72

(P4)

" This is (P3) with arbitrary h and a = 0. Since v¥,(x) is arbi-
trary so is x +7;(x) we consider the slightly modified versxon
of (P4)

Min E[(x - Y (73(x) +v2))?] st E(ri(x) <a

T 72

(P4')

where we have regarded h in (P4) as a LaGrange multiplier
for the constraint E(71) < a. Problem (P4 ) has a natural in-
formation-theoretic interpretation. DM, observes x ~ N(0, 0%)
and encodes his observation as u; which is sent over an addi-
tive Gaussian channel (z; =u; + vz, vz ~ N(0, 1)) subject to
power constraints. DM, must decode z, to produce u; which
serves as an estimate of x. The criterion is simply mean-square
error. In (P4"), the sole purpose of uy is to signal to DM,
about the state of nature x; its effect does not enter the crite-
rion function directly. In this sense information theory can
be viewed as the simplest kind of team decision theory with
non-PN dynamic information structure in which only the
“signaling” aspect is involved. To be sure, classical Shan-
non information theory, e.g., in the case of Gaussian source
(x ~ N(0, 0*) and Gaussian channel (z; = u; + v, v ~N(0,1))
address somewhat different issues. In the context of (P4 )it
conmders the following generalization of (P4'). Let x =[x,
*, %] where x; are independent samples of x from N(0, ),
DM1 is allowed to send messages uy = [uy1, 412, " , Uim]
where each component uy;="7y;{x1,""",x,] is a]lowcd to
depend onall x;,j=1,"**,n The received signal z, = [z4,
, Zam] is defined in the natural way z,;=uy; +v; where

v; are independent samplw from N(0, 1). DM; then decodes Z,
to produce uy = [ug1, "~ *, u9;=Y26(221," " ", Zam), " " * , Yanl
as estimate of x. Thus we have the following Information

"Terminology due to P. Varaiya,
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Theory (IT) problem

1
Y1372

zn: (x; - 72:’(32))2]

n =1

(P4'-IT) st.Zap=uyptuy, i=1,---,m
1 m
and — 3" E(vi)<e

i=1

In the limit as », m = * but m/n =R = constant, we can visu-
alize (1/n)E [Z7_y(x; - 725(22))’] =D as the average distor-
tion and (1/m) Z%, E(v%;) = a as the average cost.® Solution
of (P4"-IT) in this asymptotic case then gives the minimum
distortion D* as a function of R. This is essentially what is
known as the rate-distortion function in information theory.
Intuitively, D* varies roughly inversely as R. The nontrivial
results in IT are the demonstration that this D* can in fact be
achieved and calculated without explicitly solving the optimal
encoder and decoder pair (y;,7z). In (P4'-IT), we let each
component of ¥; and u, depend on the entire x and 2z, vector,
respectively. This is known as block coding and decoding. It
means in the case that x;'s are sequentially generated that in
order to send the first message u,;, one may have to wait ini-
tially until x, is generated. A similar delay may be required in
decoding if the channel accepts messages sequentially, i.e.,
generation of u,,, the estimate of x;. In the context of team
theory or decentralized control such delay may be unaccept-
able, Instead we may consider what might be called the Real
Time Information Theory (RTIT) problem®

Problem (P4'-IT) with the added constraint
U=V, e, Vi

Uz =Y2i(221," " ", 259, Vi

Very little is known about (P4'-RTIT) type of problems. Indi-
cations are furthermore that they are very difficult problems

[4]. However, result from (P4'-IT) can always serve as another
lower bound to solutions for (P4'). In fact, we have

J* (P4"IT) <J* (P4-RTIT) <J* (P4')  (IV-1)

since each case successively enlarges the space of admissible
(71, 72) pairs.

Various known results in connection with real time ‘‘signal-
ing” inspired by knowledge of classical information theory can
be found in [5].

(P4'-RTIT) {

V. APPLICATION TO EcoNoMICS

Team theory was originally developed by economists to
model economic problems under the constraint of imperfect
information. Some of the original motivations for the develop-
ment of the theory have been largely eliminated through the
wide availability of computer information networks, e.g., air-
line ticket reservation systems. However, this merely escalated
the level at which decentralization consideration becomes
important. Current interests in distributed data base system
and command-control-communication problems are simple

81t should be intuitively clear that one always uses the maximal power
allowed.

® For simplicity we have assumed m = n here. If m # n some obvious
modification is necessary. The principle is that decisions u,; or u,; can-
not depend on samples not yet generated or messages not yet received.
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manifestations of the cost of acquisition and management of
information and need for decentralization. We shall describe
below some illustrative examples of the more recent team-
theoretic considerations in economics,

Let us consider another variation of our thematic example
with a resource allocation interpretation. Let the payoff be

=‘{(%"§ "‘31"1)"'(“% u3 +0u,) "";‘,(ul +u, - x)?}
(V-1)

where a0, x are Gaussian-distributed r.v.'s with specified
p(0y, 0z, x). If we choose =1, h =g =% and maximize J in-
stead of minimizing then (V-1) is essentially the same as that
of (P1) save for the addition of the o u;, @u, term The inter-
pretation of (V-1) is however quite different; '(z u? +opu;),i=
1,2 is the production function of DM; who shares a common
resources x with the other DM. The soft resource constraint is
represented by the third term of J in (V-1) which might be a
plausible substitute for the constraints u;, u; >0 and uy +
u, =x. Thus the object is to maximize production subject to
resource constraints, '
Let DM;’s information be

(V-2)

which is information on local production parameters. Also
for simplicity, we shall assume a;, &, x are zero mean, unit
variance, and independent. Neither of these assumptions are
necessary. However, not assuming them complicates the alge-
bra considerably and obscures the point we wish to make below.
The zero mean assumption can be justified by viewing u;, u,
as perturbations from nominal production decisions and x as
perturbation in resources. However, it should be pointed out
that for independent @,,,, and x, the team aspect of the
problem at this point is trivialized. The problem decouples
and the optimal solution is given by

uf =-a,/2

Zp =y

J*=0.

Now suppose there is a coordinator to whom DM; and DM,
report their individual observation z; and z, and who in turn
broadcasts a message back to the DM’s. For example let the
message be

u; = "012/2-

x+ta; +oy

A=~ —— (V-4)
then we can show directly that for
uf =-ay - A (V-5)
uf =-ay - A
J¥=1>7e (V-6)

The solution (V-5) and (V-6) has the following interpretation,
ie., they also solve the problem

Max - (3 u} +aqu;) - (Ju} +aauy) st.ug +uy =x (V-7)

where everyone has complete information about a;, &, and x.
“A”" above plays the role of LaGrange multiplier or the “price”
the coordinator charges for the use of the resource x; u; is
then the profit maximizing decision of “production revenue-

19This is a grossly simplified interpretation. For a more elaborate

model and explanation see [6].

(v-3)
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cost of resources.” Since there is more information for every-
one under (V-7) then (V-1), it is not surprising that J #50
What is interesting is that the solution does not require DM;
to know about x or the other production parameters oy The
coordinator only needs to broadcast a single number, the price
A. This is the well known Amrow-Hurwicz algorithm for de-
centralized resource allocation [22]. The saving afforded by
this algorithm grows as the number of DM increases. What is
even more interesting from team theory point of view is that
as the number of DM grows we have

n n
I=Y - uj - oquy) s.t. D u=x (V-1
i=1 i=1
and
up =-ay-X, i=1,'",n (V-8)
where
x
B Q; (V-9)
non;;

Since a;'s are independent samples from a zero-mean distribu-
tion, the variance of A decreases with increasing n, i.e., A be-
comes more and more predictable. Consequently, the per-
centage difference (J # - J*)|7¥ decreases to zero. Intuitively,
the reason for this is the fact that as the number of team mem-
ber grows without limit the sample distribution of different
member types (represented by the different production pa-
rameters @;) approaches the underlying distribution. In other
words, every &; value that could arise will in fact be present.
Since each individual DM; is coupled to the other DM’s only
through their aggregate demands on the shared resources, no
more uncertainty is left in the problem. No communication
among members is as good as complete exchange of informa-
tion. It is only necessary for the coordinator to broadcast the
value x at the beginning. No reporting by the members are
necessary. The aggregate demand of all the DM’s can be pre-
dicted beforehand.

Another interesting phenomenon associated with (V-1) is the
question of incentive in teams [7]. We can interpret the first
two terms in (V-1) as the production function of two divisions
of a conglomerate company who are competing for a common
resources (e.g., capital) available from the headquarters. Since
the performance of (or reward to) each division is measured by
its own production, i.e., 3 u} +o;u;, there are incentives for
each division to misrepresent their production parameter &; in
the hope that they may be allotted a larger share of the scarce
resources x, For example, left to their own devices, each
division would want u; =-q;. On the other hand, the center
according to (V-1) would want uy =(x - 20 +&;5)/3, u; =
(x - 205 + ;)/3. Thus it is tempting for each division to
report a somewhat larger @;, say &;, to the center. Suppose
it is not possible for the center to verify the truth of the re-
ported &;’s.!! The question that then arises as to whether or
not it is possible for the center to devise an incentive structure
based on only the knowledge it has (which may contain mis-
information) so as to induce each team member to report the

‘! This is consistent with the assumptions of the team problem. Other-
wise, the center might as well solve the entire problem and each division
is merely told what to do. We assume here that the members are free to
report whatever they wish about a; which now represents their deci-
sions. The center then chooses u,, u, based on these reported o;'s.
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truth. This question has additional application in areas such
as allocation of the cost of public goods and project which
must be paid for by members who partially benefit from such
projects. For details see [8] and references therein, The basic
idea however can be easily captured via our example.

Let &;, & be the production parameter reported by the
member divisions to the center. The center accepts these
values as truthful and compute the optimal allocation

Ay T 2&] + ag

A 1_2&2 +&2
Uy = -
3

Uz 3

on this assumption, and declare an incentive structure which
says that the ith division will receive

(V-10)

Ji=-G A7 + o) + [~ (G 8] + &) - § (- B - )
- 4(&). (V-11)

Equation (V-11) has the following meaning. The first term is
the actual payoff earned by division i based on the allocation
#1;. The second term has the meaning as what the center
“thinks” as the contribution of the rest of the company based
on the report of the team members. The third term is a term
dependent only on the parameter of the other team member.
It is to be chosen so that

Ay(8) + A2 (@) > [-(R 4T + 8@ - £ (x- Gy - 82)7]
+[-(L ity +Gt) - 2 (x- &y - 83)%]. (V-12)

In this sense, we can view the sum of the second and third
term in equation (V-11) as a form of “profit sharing” payoff
declared by the center payable to division i. Equation (V-12)
is to insure that the center will always have enough money to
pay each division’s profit-sharing share, Now maximizing
J; with respect to &;, it can be directly verified that the optimal
@y is in fact equal to a;, the true value. In other words, the
incentive structure is such that any advantage that can be ob-
tained from the first term in (V-12) by not telling the truth
about oy will be more then offset by the second and third
term. In fact, the profit-sharing terms may be negative in
extreme cases. To complete the story, we must demonstrate
that it is always possible to find 4; and A4, to satisfy (V-12)
and hence the postulated incentive structure. Consider

31 +92 =12.

It is clear that Ay + 4, satisfies (V-12) since 4; + A5 is the
largest value that could be taken on by the right-hand side of
(V-12).

A third example application of team-theoretic ideas in eco-
nomics is to market signaling by Spence [10]. This problem
actually involves dynamic information structure and is further
related to the information-theoretic issues discussed in Section
III. In terms of our formulation, the problem can be stated as
follows:

An employer must hire someone for a job without knowing
how productive that individual will be. In other words, the
employer has imperfect information about an individual’s
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ability. Spence suggests that the employer can improve his
information by looking on the job application for some signal,
such as educational level. The employer offers wages based
on the signal he sees; that is, a person with more education is
offered higher wages, because the employer believes that the
higher education indicates higher ability. The individual
applying for the job, on the other hand, knowing he will re-
ceive wages based on his educational level, must decide how
much education to get, taking into consideration that educa-
tion is costly. Let DM; = all potential employees considered
together, DM, =the employer, x =an individual’s ability
(known to that individual, but not to the employer), uy (or
uy + noise) = educational level, and u, = wages. The payoff
or loss function of DM, is [x - u,]?; he does not wish to
overpay or underpay with respect to x. The payoff of DM, is
simply the net profit u, - c(uy, x) where c is the cost of sig-
naling. Thus we have

Find uy ='}"1(Zl) Uy =72(22) to
Max J; = E[u; - c(uy, x)].
Min J'2=E[(u2-x)2}

where z; = x

(P5)

Zyq T Uy,

There is a great deal of commonality between (P5) and (P4')
discussed earlier. (P4) is a true team theory problem. Both
u; and u, are interested in minimizing E(u, - x)* subject
to some cost or power constraints on u;. Here, only u, is
interested in minimizing E(u, - x)?, while u; has his own pay-
off with cost considerations. Thus instead of a cooperative
minimum they are seeking a person-by-person noncooperative
optimum. The important point is that the information struc-
ture is dynamic (z, =u,). Agent 1 can in fact use his action
u, to signal agent 2 about the state of nature x. Many inter-
esting economic implication and interpretation of such a model
can be derived from this signaling structure, For further de-
tails see [9], [10].

V1. DECENTRALIZED CONTROL AS TEAM
DEcCisiON PROBLEMS

We have so far in our discussion paid minimal emphasis on
“dynamics.”” Although in some versions of the thematic
example the notion of who acts first, i.e., order of decision,
is important, the usual feature of dynamical systems in terms
of ordinary or partial differential or difference equations is
absent. This is deliberate for two reasons. Firstly, we wish to
clarify the concepts involved without additional complexities.
Secondly, from the viewpoint of team theory and information
structures, ‘““dynamics” in its usual sense is only a complicating
and sometimes misleading detail. It adds little to the con-
ceptual problem. We shall explain what we mean.

Consider a stochastic dynamic system described by an ordi-
nary difference equation

Xte1 =f(xtv Ug, wl‘)! = la T, 7 (Vl'l)

where w, is a given stochastic sequence with specified p(w,,

***,wr_1); Uy are the control variables and x,, the state vari-

ables. Let the cost of controlling this system be measured by
J=E[¢(x7)]. (VI-2)

We then have the beginning of an optimal stochastic control
problem or sequential decision problem.
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From team theory viewpoint, we can regard u, as the choice
of a distinct decision maker DM,i=1," -+, T, versus the rth
decision of a single controller as it is customary done in con-
trol theory. Now substituting (VI-1) repeatedly in (VI-2) we
get

J = E[¢(f(xp-1, up-1, Wr-1))]
= E[¢(f(f(x1-2, -2, Wr-2), ¥r-1, Wr-1))]

éE[L(ulp Uy, """ ,Ur-1, W1, """, Wr-1, xi)I- (VI'S)
In the notation of Section II, uy, = * -, up_; are the decision
variables of the team and wi,- - ", wpr_y, Xy are Nature’s

decisions, the random variable §£. The point to emphasize is
that the so-called “state variables” in dynamic system is of
secondary importance here. Similarly, observations on the
dynamic system such as

(VI-4)

where v, is another given stochastic sequence can be handled
by substituting out x, using (VI-1) to yield

zp = he(xs, vg)

zr éf!t(uj.- T Uy, Wi, " %, wf—l!xls Ur)
£ 1e(u, £). (VI-5)

Equation (VI-5) is a generalization of the model of informa-
tion structure we introduce in (II-1)(II-7). It is here in the
information structure that “dynamics™ in the usual sense plays
a crucial role in our problems. The presence of u in (VI-5)
makes the information variable dependent on the decision vari-
able, and hence the strategies, of the earlier decision makers.
In our discussion earlier with respect to (P3), the difficulties
introduced by (VI-5) were discussed in detail. Unless addi-
tional structure is assumed for (VI-5), relatively little can be
done. On the other hand, aside from this basic difficulty, the
presence of “dynamics” in a team problem poses no additional
problems. For other examples on reducing dynamics to the
team model of Section II see [11]. It is for this reason that
deterministic dynamic control problem involving several players
are often solvable since the dual and triple control aspects of
the problem are absent.

It is appropriate at this point to discuss what appropriate
structural assumption can we make regarding n in the dynamic
case. In the one controller case, perfect memory is a standard
as well as a reasonable assumption for 7. This reduces the
problem to a special case of the PN information structure.
However, when there are actually several controllers involved
each controlling one or more dynamic systems, group perfect
memory (in the sense that every controller knows the infor-
mation available to every other controllers in addition to per-
fect memory) simply assumes away the problem as well as not
being acceptable in a practical sense. In this sense optimal
decentralized stochastic control is an extremely difficult prob-
lem inasmuch as we cannot even solve the simplest problem
(P3).

A very comprehensive discussion of the interplay between
information structure and strategies in the setting of discrete
time decentralized stochastic control can be found in [12].
One of the best known examples in this area is the so-called
“one-step delay sharing information structure” [12], i.e.,
each controller shares all but current information with others.
This is a special PN structure adapted to decentralized dy-
namic systems. Heuristically, since all past information are
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shared, the dependence of information on past strategy can be
eliminated leaving only the part of current information which
are independent from past strategies and which are different.
The problem than reduces to the static case of (P1) and Propo-
sition 2. Further extensions of ideas along this line can be
found in [13], [14]. One particularly surprising result in
delay sharing information structure is a counter example inde-
pendently discovered [15], [16] which refutes a very intuitive
conjecture stated in [12]. Briefly this is the situation. Let
two controllers share information with n-step delay forn > 1
(say,n = 2). The information structures at time ¢ are

1
M= {y}, J’}-l, Cr-z}
2 T4
n; = s, ¥1-1, Ce-a}
where C;, is the common information both controllers share
about the dynamic system two steps ago and y:, y:_l are the
private information the /th controller has about the system.

The conjecture being that there is no loss of generality if we
restrict our consideration of control strategies to the class

up = Vi (Vh, i1, P(xp-1/Ce-3))

where p(x;_1/Cy-;) is the conditional distribution of the
“state” of the dynamic system at ¢ - | given C,_,. The failure
of this conjecture has to do with our erroneous attachment to
and preoccupation- with the concept of the “state” of a dy-
namic system which is a leftover from deterministic considera-
tions. If one insists, then for the case of n =2, the “state”
should be the triple x;._,, u}._l, ui_, since only by knowing
all three values can we eliminate the dependence of the pri-
vate information »{, y{_, from past strategies. For more
details see [26].

Since optimal solutions are difficult to obtain, one is often
forced to ask a less ambitious question, such as what interest-
ing properties of decentralized control system can we discover
if we restrict a priori the class of admissible strategies?

In one sense, by restricting the admissible strategies to some
narrowly defined class (e.g., linear and finite dimensional in
information variables), one has assumed away the informa-
tional aspect of the problem. Even if optimum can be achieved
within the class, there is usually no guarantee that performance
cannot be significantly improved if one goes outside the class.
Thus the raison d Ztre for this approach lies in other properties
of the optimal solution. For example, the periodic coordina-
tion scheme of [17] suggests organizational imperatives which
are intuitively reasonable, Also qualitative questions such as
the controllability, observability, and stability of decentralized
controlled dynamic system under certain class of strategies are
often of interest. Since these matters lie outside the range
of team theory defined in the orthodox sense of the term,
we refer readers to a recent comprehensive survey on the sub-
ject [18].

There is one other point worth emphasizing in connection
with decentralized control and information structure. In a
team problem every decision maker is by definition interested
in the same team payoff, i.e., he is fully cooperative. It is
natural to assume that every DM know the strategy of every
other DM. In this case knowing what DM; knows is equivalent
to knowing what he will do, i.e., u; = 7;(7;). Nothing is gained
by having an information structure which includes the explicit
knowledge of u; if the information structure already contains
n;. However, in many pemson control problems, different
players may not share the same payoff. In such cases, there
is considerable difference between the information structure
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n= {"'uf,n,-,"'] and n}={-°',ni,---}. With the first
structure, the possibility of directly influencing DM;,’s decision
by DM; exist. Knowing both u; and 7y, DM; is in fact in a
position to verify whether or not DM; indeed employed a
certain strategy ;. DM can threaten to undertake certain
actions unless DM; behaves in certain manner. For example,
the strategy y; camx be as follows

up=-c -+ flu; - ’f(ﬂj)) -8 ¥i(nD) (V1-6)

where 'f;-’(ni) is the desired strategy for DM; by DM; and fis
some penalty or incentive function used to induce the proper
behavior of DM;. Strategies of the form of (VI-6) has been
used to

1) derive nonunique Nash equilibriums in nonzero sum con-
trol problems [19] ;

2) convert a Stackelberg control problem to a team control
problem [20], [21]. .

The last point is sufficiently interesting to warrant a simple
illustration of its main concept particularly since it appears
more complicated than it really is in the general literature.
Consider J; = Ly(uq, u;) and J; = L5 (u;, u,). Suppose further
that u, can use a strategy which depends on uy, ie., u; =
v2(u;). Then for given 7,, u; must solve the problem of
Max,, Lj(us,72(u;)). The result is in general given by

uy =73(72). (VI-7)
Knowing the response of u; in (7), u, faces the problem of
Max, La(u; =79(y2), u2 =72(uy)). Suppose uj and uj are
the team solution to Max, Max,  L,(uy,%;). We can choose
au, = y3(u,) such that

(VI-8a)
(VI-8b)

uh =73(ul)
ul =11(v3)

i.e., we have achieved the lower bound of L;. See also [30].
More surprising is the fact that 3 can generally be chosen
to be affine in uy, i.e., u; =au; +b where ¢ and b are con-
stants to be determined by the two equations (VI-8a) and (VI-
8b). Since (VI-Ba) is satisfied by choice, we can generally
determine a and b so long as 7] in (VI-8b) possesses the prop-
erty that either @ or & can be solved for in terms of the other
and uf, a most reasonable requirement. Note that the above
illustration can be extended to the stochastic case and is not
dependent on any LQG properties. What we have here is the

ability of one DM to completely influence the decision of-

another because of the dynamic nature of the information
structure.

This idea of incorporating one DM’s action in another DM’s
strategy as a generalized incentive or threat can be traced
back to the literature on repeated games [28]. For example,
in zero sum repeated games, one player may be forced to dis-
regard some useful information in making his decision lest
his actions will reveal this information to his opponent. Threat
of retribution may also create desirable outcomes in repeated
games, such as Prisoner’s dilemma, where honest cooperation
free from cheating is required.

VII. CONCLUDING REMARKS

In a decision and control context, the ultimate purpose of
acquiring information is to make better decisions.  This natu-
rally raises the question of the value of information. For ex-
ample, while the knowledge of the winning lottery numbers
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in last week’s and next week’s drawing have the same infor-
mation content in the Shannon sense, they have very different
values. The study of information structure eventually should
lead to a cost-benefit analysis of “who should know what?”
However, in general we are far from being able to answer such
a query systematically and in a unified manner. Several diffi-
culties are involved. First of all, our understanding of the
subject of dynamic information stroctore i-meager. One pur-
pose of this paper is to convey a sense of both the difficulty
and the richness of the subject. Much more insight, for ex-
ample, on the matter of “signaling™ and “‘incentive structure™
are needed before more sophisticated application of team
theory can be realized. In this sense, much of the current
work can be thought of as preparatory and basic. Secondly,
the question of value of information implies the ability to
determine the optimal solution to decision problems with or
without the particular piece of information in the information
structure. In view of the difficulties of solving decision prob-
lems in dynamic information structure, one tries to device
methods to order information structures without having to
solve the decision problems involved. For example, if the
information structure 7’ is a garbled version of another struc-
ture 1 then 7 is more valuable than n' for all payoff functions
which are not functions of the garbling noise.'?

Finally, the problem of information structure design is re-
lated to the question of organization theory. It is often con-
jectured that organizations are formed due to the requirement
of informational efficiency. However intuitively appealling
such a conjecture may be, to formalize and make precise such
statements require results and concepts yet to be developed.

It is likely that the problems in information structure will
remain with us for years to come, Many interesting conflu-
ences of diverse disciplines are taking place around this sub-
ject. We have already touched on economics, decision and
control, and game theory. A fourth possibility in the future
lies with computer science and distributed data base systems.
Although current efforts in this subject are directed along
rather different lines, we mention one example of such possi-
bilities [241, [25]. '

Note: The optimal decision rules are:

for B goif it rains
go if it shines
for H same as B.
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Spectral Analysis and Adaptive Array
Superresolution Techniques

WILLIAM F. GABRIEL, SENIOR MEMBER, IEEE

Abstract—Recent nonlinear “superresolution” techniques reported in
the feld of spectral anslysis are of great interest in other felds as well,
including radio-frequency (RF) adaptive array antenna systems. This
paper is primarily a “cross-fertilization™ ttuniewluch takes the two
most popular nonlinear techniques, the Burg maximum entropy method
and the maximum likelihood method, and relates them to their similar
nonlinear adaptive array antenna counterparts, which consist of the
generic sidelobe canceller and directional gain constraint techniques.
The comparison analysis permits an examination of their principles of
operation from the antenna spatial pattern viewpoint, and helps to
qualify their actual superresolution performance.

A summary of the resolution performance of several adaptive algo-
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This contribution is derived largely from [1], and also, s subsequent
report [2].

The author is with the Radar Division, Naval Research Laboratory,
Washington, DC 20375.

rithms against multiple-incoherent sources is provided, including a
universal graph of signal-to-noise ratio (SNR) versus source separation
in beamwidths for the case of two equal-strength sources. Also, a
significant dividend in the easy resolution of unequal-strength sources
is reported. The superresolution of coherent spatial sources or radar
targets is more difficult for these techmiques, but successful results
have been obtained whenever sufficient relative motion or “Doppler
cydes” are available. Two alternate adaptive spatial spectrum estimators
are suggested, eonﬂshmofsmculnmypmdncmtom center point,
and a new “thermal noise™ algorithm

L. INTRODUCTION

subject area of intense interest in the fields of spectrum
analysis, geophysics, underwater acoustics, and radio-
The major reason for the

NONL[N‘EAR spectral analysis techniques are currently a

frequency (RF) array antennas.
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